MOLECULAR CLONING AND NUCLEOTIDE SEQUENCE OF COMPLEMENTARY DNA FOR HUMAN HEPATIC CYTOSOLIC ACETOACETYL-COENZYME A THIOLASE

Xiang-Qian Song¹, Toshiyuki Fukao^{1,*}, Seiji Yamaguchi^{1,2}, Shoko Miyazawa³, Takashi Hashimoto³, and Tadao Orii¹

¹Department of Pediatrics, Gifu University School of Medicine, Tsukasa-machi 40, Gifu 500, Japan

²Department of Pediatrics, Shimane Medical University, Izumo, Shimane 693, Japan,

³Department of Biochemistry, Shinshu University School of Medicine, Matsumoto, Nagano 390, Japan

Received April 12, 19	94
-----------------------	----

Summary: Complementary DNA for human cytosolic acetoacetyl-CoA thiolase (CT) was cloned with the use of anti-[human CT] antibody. The human CT cDNA clone (HCT10) has a 1479-bp insert and a 1191-base open reading frame encoding 397 amino acid residues. Partial polypeptide sequences from purified human CT were present in the deduced sequence. *In vivo* expression analysis showed that HCT10 encoded potassium-ion non-activated acetoacetyl-CoA thiolase with no 3-ketooctanoyl-CoA thiolase activity, which is characteristic for CT. The deduced amino acid sequence has a 34-57 % homology with 4 other human thiolases and 4 acetoacetyl-CoA thiolases of microorganisms.

© 1994 Academic Press, Inc.

Cytosolic acetoacetyl-CoA thiolase (EC.2.3.1.9) (CT) is one of five thiolases present in mammalian cells (1-3). CT was purified from chicken liver in 1973 (4) and from rat liver in 1974 (5). Rat CT is homotetramer of the 44 kD subunit. Rat CT activity is rich in brain, liver, and adrenals but poor in heart and muscle, hence, is likely to be involved in the pathway of steroid biosynthesis, catalyzing the synthesis of cytoplasmic acetoacetyl-CoA for substrate conversion into 3-hydroxy-3-methylglutaryl-CoA (5).

Abbreviations used in this paper: CT, cytosolic acetoacetyl-CoA thiolase; T1, mitochondrial 3-ketoacyl-CoA thiolase; T2, mitochondrial acetoacetyl-CoA thiolase; PT, peroxisomal 3-ketoacyl-CoA thiolase; TFP, mitochondrial trifunctional protein; Tcp-1, t-complex polypeptide-1.

^{*} To whom correspondence should be addressed.

Another acetoacetyl-CoA specific thiolase (T2) is present in mitochondria and plays roles in ketone body and isoleucine catabolism. T2 deficiency, known as β -ketothiolase deficiency, is an inherited organic aciduria which is well-defined at clinical and molecular levels (6-15). The other 3 thiolases, i.e. mitochondrial 3-ketoacyl-CoA thiolase (T1), mitochondrial enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein (TFP) and peroxisomal 3-ketoacyl-CoA thiolase (PT), have substrate specificity for the longer 3-ketoacyl-CoA and play roles in fatty acid β -oxidation in mitochondria or peroxisomes (1-3). Deficiencies of the thiolases, except for T1, have been reported (16-18) and human cDNAs for these thiolases except for CT have been cloned (10, 19-21).

Descriptions of a few patients with CT deficiency have been reported (16, 22). Severe mental retardation and hypotonus are characteristic but clinical symptoms and laboratory findings including urinary organic acids are not so specific. The enzymatic confirmation of CT deficiency is difficult using fibroblasts because activities of T2 and T1 interfere with the CT assay. It seems important to clarify the molecular basis of CT deficiency to elucidate the role of CT in mammalian cells. Immunochemical and DNA analysis may facilitate an accurate diagnosis of CT deficiency. We have found no report of development of a CT antibody or of molecular cloning of mammalian CT cDNA.

We cloned the human hepatic CT cDNA and use was made of an anti-[human CT] antibody which we developed.

MATERIALS AND METHODS

Development of anti-[human CT] antibody. We earlier purified CT from a human autopsied liver (8), using the same method as for rat liver, as described by Middleton (5). 0.2 mg of the purified enzyme was emulsified with Freund's complete adjuvant, and injected into the axillary regions of a rabbit. A booster of the same dose was given twice and blood samples were collected two weeks after the last booster injection. The antibody was partially purified by fractionation with ammonium sulfate and dialyzed against 0.15M NaCl containing 10 mM potassium phosphate, pH 7.5. Immunoblot analysis was done using the ProtoBlot AP system (Promega).

Amino acid sequencing. The purified CT was partially digested with several proteases.

Polypeptide fragments were separated in SDS-PAGE and transferred to a PVDF membrane.

Amino acid sequence analysis was made on an Applied Biosystem Model 477A pulsed liquid-phase sequencer and an on-line Model 120A phenylthiohydantoin analyzer with a regular cycle program and chemicals from the manufacturer.

cDNA library screening and sequencing. A human hepatic λ gt 11 cDNA library (Clontech) was screened using the anti-[human CT] antibody. Further screening was done by the plaque hybridization method using a labelled fragment from a positive clone (HCT 16). Fragments were subcloned into pTZ 18U (U.S. Biochemicals) and sequenced by the dideoxy-chain termination method with a modified T7 DNA polymerase (U.S. Biochemicals).

Computer analysis. Homology searches in SWISS-PROT protein data base, multiple sequence alignment and calculation of molecular mass were done using DNASIS Mac (Hitachi Software Engineering). Sequence alignment was modified slightly, by eye.

In vivo expression analysis. Full-length cDNA was subcloned into an expression vector, pCAGGS (23). T2 and CT cDNAs were transfected into SV40-transformed fibroblasts of GK03

(T2 deficient cell lines) as described (14), except for the use of Lipofection (Gibco BRL) instead of TransfectAce.

RESULTS AND DISCUSSION

Development of anti-[human CT]antiserum. With three injections of the purified enzyme into a rabbit, the anti-[human CT] antibody was acquired. In immunoblot analysis, it recognized human CT in 30 μ g of fibroblast extracts and 10 ng purified CT although it cross-reacted faintly with T2 (data not shown). For antibody screening of CT cDNA, we used it with no further purification. Isolation and characterization of human CT cDNA. Only one positive clone (HCT 16) was obtained from 1.6×10^5 plaques of a human liver cDNA library by screening with the antibody. HCT 8 included an insert of about 800-bp. Multiple sequence alignment of the deduced amino acid sequence encoded in HCT16 with those of 4 other human thiolases (10, 19-21) revealed that the deduced sequence shared high homology but was not identical with the carboxy-terminal amino acid sequences of the other thiolases. We hence regarded HCT16 as CT cDNA. 2.0 x 10^5 clones of the same library were screened with HCT 16 as a probe, and HCT 8 and HCT 10 were obtained. The HCT 10 insert was 1479-bp long and included a 1191-bp open reading frame encoding 397 amino acids (Fig. 1). Amino acid sequences determined from the purified enzyme were identified in the deduced sequence (Fig. 1, underlined sequences). Molecular mass of the deduced amino acid sequence was calculated to be 41293.44, a value in accord with that estimated by SDS-PAGE (data not shown). Alignment of the amino acid sequence with other thiolases showed that Met in HCT 10 was located at a reasonable position as the initiator methionine (Fig. 2). HCT 8 had a truncated 3' non-coding region which may be produced with the use of an alternative polyadenylation signal at position 1257-1263 (Fig.1. boxed). In vivo expression of cDNA. Table I shows the results of in vivo expression analysis. To reduce the intrinsic acetoacetyl-CoA thiolase activity, SV40-transformed T2 deficient cell lines were used, as described(14). When human T2 cDNA was transfected, acetoacetyl-CoA thiolase activity in the absence of potassium ion was elevated 1.6 fold over the intrinsic activity and the activity in the presence of the ion was 6.7 times higher than that in the absence of the ion, a characteristic feature of T2(1). On the other hand, in transfection of CT cDNA (HCT 10), acetoacetyl-CoA thiolase activity was elevated about 60 fold over the intrinsic activity, in both the presence and absence of the ion. Moreover, there was no elevation in 3-ketooctanoyl-CoA thiolase activity. These results show that HCT 10 is the cDNA for human CT and encodes a full-length CT polypeptide. Amino acid sequence homology. Figure 2 shows amino acid sequence alignment of human CT with 4 other human thiolases (HT2, HT1, HTFP, and HPT), one Saccharomyces acetoacetyl-CoA thiolase, ST (24), and three bacterial acetoacetyl-CoA thiolases, ZT (25), AET (26), ET (27). The CT sequence showed the closest homology (57 %) to both ZT and AET, although a 34-57 % homology among these thiolases was observed.

			-31	-21 -11 -1
				GCAGGGCAG ACGGCGGCAG GAGAAGCAAG
9 18		36	45 54	63 72 81
				TCC TTC AAT 66T GCC TTA GCT GCT Ser Phe Asn Gly Ala Leu Ala Ala
90 99		117	126 135	144 153 162
				GTG GCT CCG GAA GAT GTG TCT GAG Va! Ala Pro Giu Asp Vai Ser Giu
171 180		198	207 216	225 234 243
				AGT GTG GGT GCA GGA ATT CCC TAC Ser Val Gly Ala Gly lle Pro Tyr
252 261		279	288 297	306 315 324
				CTT GCA GTC CAG TCA ATA GGG ATA Leu Ala Vai Gin Ser lie Gly IIe
333 342		360	369 378	387 396 405
				TTG GCT TAC TTG AGA ACA GGA GTA
				Leu Ala Tyr Leu Arg Thr Gly Val
414 423		441	450 459	468 477 486
				TTT CAC AAC TGT CAT ATG GGT ATT Phe His Asn Cys His Met Gly lie
495 504		522	531 540	549 558 567
				GCA GTT CTG TCC CAG AAC AGG ACA
				Ala Val Leu Ser Sin Asn Arq Thr
576 585		603	612 621	630 639 648
				ACT AGA AAA GGT CTT ATT GAA GTT
				Thr Arq Lys Gly Leu lie Glu Val
657 666	***	684	693 702	711 720 729
				CCT TAC III CIT ACT GAT GGA ACG Pro Tyr Phe Leu Thr Asp Gly Thr
738 747		765	774 783	792 801 810
				CTT ATG AAG AAG TCA GAA GCT GAT Leu Met Lys Lys Ser Giu Ala Asp
819 828		846	855 864	873 882 891
				CCT TCC ATT ATG GGA ATA GGA CCA Pro Ser lie Met Giy ile Giy Pro
900 909		927	936 945	954 963 972 ATA TIT GAA ATC AAT GAA GCC TIT
				lle Phe Glu lle Asn Glu Ala Phe
***	999		017 1026	1035 1044 1053
				ATT GAA GGA GGG GCT ATA GCC TTG
1062 1071	1080		098 1107	1116 1125 1134 GAG AGA ATG GGC AGA AGT CGT GGT
				Glu Arq Met Gly Arq Ser Arq Gly
1143 1152				
	1161			194 1200 1210 1220 TGA CAATGT GTGTTCAGAG AGAATGAAT
Val Ala Ala Leu Cys lie				
1230 1240 TECTTAAACT TTGAACAACC TO		1260 1270	1280 1290 STISCANIA ISISAANICA	
1310 1320		1340 1350	1360 1370	
AAACCATTTC CTACATCACA AA				
1400 1410		1430		
TITAACATTE TTATAAATAA A	AGGAACATC AGATCAA	ATCA TTAAAAAAAAA	AA	

Figure 1. Nucleotide sequence of human CT cDNA with the deduced amino acid sequence. Nucleotide sequence of HCT 10 is shown with the deduced amino acid sequence. The first residue of the initiator ATG triplet is designated as nucleotide number 1. The termination codon is indicated by ***. Boxed sequences, AATAAA, are the putative polyadenylation signals. Underlined amino acid sequences are identical to those obtained from sequencing of purified human CT.

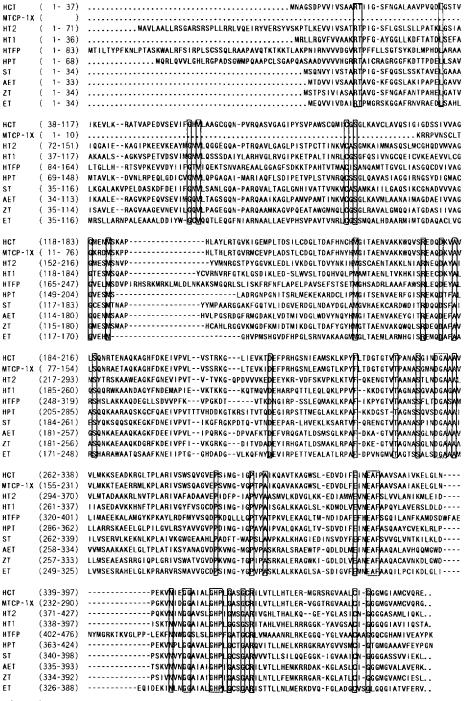


Figure 2. Alignment of the deduced amino acid sequence of human CT with those of other thiolases. Abbreviations used are as follows: HCT, human cytosolic thiolase; MTCP-1X, mouse t complex polypeptide-1X; HT2, human mitochondrial acetoacetyl-CoA thiolase; HT1, human mitochondrial 3-ketoacyl-CoA thiolase; HTFP, human trifunctional protein; HPT, human peroxisomal 3-ketoacyl-CoA thiolase; ST, acetoacetyl-CoA thiolase of Saccharomyces uvarum; AET, acetoacetyl-CoA thiolase of Alcaligenes eutrophus; ZT, acetoacetyl-CoA thiolase of Zoogloca ramigera; ET, acetoacetyl-CoA thiolase of Escherichia coli. Amino acid residues conserved among all the thiolases are boxed.

Table I. Thiolase activities in cells transfected with T2 and CT cDNAs

Acetoacetyl-CoA				3-ketooctanoyl-CoA
Plasmids	-K+	+K+	+K+/-K+	
pCAGGS (-)	22.4 ± 1.4	23.4 ± 3.3	1.0	28
pCAGGS T2	36.5 ± 9.3	246 ± 86	6.7	35
pCAGGS CT	1410 ± 90	1400 ± 213	1.0	26

CT or T2 cDNA (4 μ g) was transfected to SV40-transformed T2 null fibroblasts (GK03) with Lipofection reagent. The cells were collected and assayed 72 h after transfection. pCAGGS (-) indicates a mock cDNA transfection. Activity is represented as nmol substrate change/min/mg protein. -K+ and +K+ indicate acetoacetyl-CoA activity in the presence and absence of potassium ion, respectively.

Thiolases form an acyl-S-enzyme intermediate during their catalytic reaction. Gehring *et al.* found that pig T2 formed the intermediate at a cysteine residue (28), which corresponds to Cys126 in the human T2 sequence. The cysteine was conserved amnog the thiolases and Cys92 in CT occupies the position. Masamune *et al.* pointed out that Cys378 in ZT is also the acitive site involved in deprotonation in the reaction toward acetoacetyl-CoA formation (29,30). Indeed the position was also occupied by the cysteine residue, in all the thiolases (Cys383 in human CT). Molecular analysis of T2 deficiency showed that alternation of amino acid residues in the highly conserved carboxy-terminal region, 346-361 in CT, of which the sequence could be summarized G-G-A-I/V-S/V-L/I-G-H-P-I/L-G-X-S/T-G-X-R resulted in instability of the thiolase protein (11, 15). The precise role of this region is unclear.

Homology search revealed that the mouse t-complex polypeptide-1 like sequence (Tcp-1x) has a 78 % homology to human CT (Fig.2). This means that CT is the same polypeptide as Tcp-1x or a protein closely related to Tcp-1x. Tcp-1x cDNA was cloned by plaque hybridization with mouse Tcp-1 cDNA but it shared only a 140 bp homology (31). Tcp-1 is considered to be a component of chaperonin for tublin and actin in the cytosol (32). Ashwarth (33) reported that Tcp-1x sequence might be that of mouse CT, as deduced from findings of the high homology with the thiolase family; the true Tcp-1-like sequence was coded in the opposite strand of the Tcp-1x cDNA. He also found that the opposite strand of human Tcp-1 gene (34) encoded a homologue sequence to the suspected CT sequence in the mouse. This thesis is correct since the nucleotide sequence of the opposite strand of most of the 3' region in human Tcp-1 gene sequence (34) matched perfectly with the 3' portion (330 bp) of the sense strand sequence of our cloned CT cDNA. These genes overlap in the 3' portion, at opposite directions. It seems likely that the human CT gene locates on chromosome 6q23-qter, because human Tcp-1 was mapped to that region (34). It must be emphasized that the suspected mouse CT cDNA apparently lacks the 5' portion of the coding sequence and there is no support for the notion that it encodes mouse CT. Our cDNA was cloned with the anti-[human CT]antibody and was confirmed to be the cDNA for cytosolic

thiolase, based on identification of amino acid sequences from purified enzyme in the deduced sequence, and by in vivo expression analysis.

ACKNOWLEDGMENTS

We thank M. Ohara for helpful comments. This study was supported in part by Grants-in-Aid for Scientific Research (03265102, 05454286, 05670666) from the Ministry of Education, Science, and Culture of Japan, and by a grant (5A-6-02) from the National Center of Neurology and Psychiatry of the Ministry of Health and Welfare, Japan.

REFERENCES

- 1. Middleton, B.(1973) Biochem. J. 132, 717-730.
- 2. Miyazawa, S., Osumi, T., and Hashimoto, T. (1980) Eur. J. Biochem. 103, 589-596.
- 3. Uchida, Y., Izai, K., Orii, T., and Hashimoto, T. (1992) J. Biol. Chem. 267, 1034-1041.
- Clinkenbeard, K.D., Sugiyama, T., Moss, J., Reed, W.G., and Lane, M,D. (1973) J. Biol. Chem. 248, 2275-2284.
- 5. Middleton, B. (1974) Biochem. J. 139, 109-121.
- 6. Daum, R.S., Lamm, P., Mamer, O.A., and Scriver, C.R. (1971) Lancet 2, 1289-1290.
- 7. Daum, R.S., Scriver, C.R., Mamer, O.A., Delvin, E., Lamm, P., and Goldman, H. (1973) Pediatr. Res. 7, 149-160.
- 8. Yamaguchi, S., Orii, T., Sakura, N., Miyazawa, S., and Hashimoto T (1988) J. Clin. Invest. 81, 813-817.
- 9. Nagasawa, H., Yamaguchi, S., Orii, T., Schutgens, R.B.H., Sweetman, L., and Hashimoto, T (1989) Pediatr. Res. 26, 145-149.
- Fukao, T., Yamaguchi, S., Kano, M., Orii, T., Fujiki, Y., Osumi, T., and Hashimoto, T. (1990) J. Clin. Invest. 86, 2086-2092.
- 11. Fukao, T., Yamaguchi, S., Tomatsu, S., Orii, T., Fraudienst-Egger, G., Schrod, L., Osumi, T., and Hashimoto, T. (1991) Biochem. Biophys. Res. Commun. 179, 124-129.
- 12. Fukao, T., Yamaguchi, S., Orii, T., Schutgens, R.B.H., Osumi, T., and Hashimoto, T. (1992) J. Clin. Invest. 89, 474-479.
- 13. Fukao, T., Yamaguchi, S., Orii, T., Osumi, T., and Hashimoto T (1992) Biochim. Biophys. Acta. 1139, 184-188.
- 14. Fukao, T., Yamaguchi, S., Scriver, C.R., Dunbar, G., Wakazono, A., Kano, M., Orii, T., and Hashimoto, T. (1993) Hum. Mutat. 2, 214-220.
- 15. Fukao, T., Yamaguchi, S., Wakazono, A., Orii, T., Hoganson, G., and Hashimoto, T. (1994) J. Clin. Invest. 93, 1035-1041.
- 16. De Groot, C.J., Luit-de-Hann, G., Hulstaert, C.E., and Hommes, F.A (1977) Pediatr. Res. 11, 1112-1116.
- 17. Schram, A.W., Goldfischer, S., van Roermund, C.W.T., Brouwer-Kelder, E.M., Collins, J, Hashimoto, T., Heymans, H.S.A., van den Bosch, H., Schutgens, R.B.H., Tager, J.M., and Wanders, R.J.A. (1987) Proc. Natl. Acad. Sci. USA 84, 2494-2497.
- 18. Wanders, R.J.A., Ijlst, L., Poggi, F., Bonnefont, J.P., Munnich, A., Brivet, M., Rabier, D., and Saudubray, J.M. (1992) Biochem. Biophys. Res. Commun. 188, 1139-1145.
- 19. Abe, H., Ohtake, A., Yamamoto, S., Satoh, Y., Takayanagi, M., Aoyama, Y., Takiguchi, M., Sakuraba, H., Suzuki, Y., Mori, M., and Niimi, H. (1993) Biochim. Biophys. Acta 1216, 304-306.
- 20. Fairbairn, L.J., and Tanner, M.J.A. (1989) Nucl. Acids Res. 17, 3588.
- 21. Kamijo, T., Aoyama, A., Komiyama, A., and Hashimoto, T. (1994) Biochem. Biophys. Res. Commun. in press.

- 22. Bennett, M.J., Hosking, G.P., Smith, M.F., Gray, R.G.F, and Middleton, B. (1984) J. Inher. Metab. Dis. 7, 125-128.
- 23. Niwa, H., Yamamura, K., and Miyazaki, J. (1991) Gene 108, 193-200.
- 24. Dequin, S., Gloeckler, R., Herbert, C.J., and Boutelet, F. (1988) Biochem. Biophys. Res. Commun. 13, 471-478.
- Peoples, O.P., Masamune, S., Walsh, C.T., and Sinskey, A.J. (1987) J. Biol. Chem. 262, 97-102.
- 26. Peoples, O.P., and Sinskey, A.J. (1989) J. Biol. Chem. 264, 15293-15297.
- Yang, S-Y., He Yang, X-Y., Healy-Louie, G., Schulz, H., and Elzinga, M. (1990) 265, 10424-10429.
- 28. Gehring, U., and Harris, J.I. (1970) Eur. J. Biochem. 16, 492-498.
- 29. Masamune, S., Walsh, C.T., Sinskey, A.J., and Peoples, O.P. (1989) Pure. Appl. Chem. 6, 303-312.
- 30. Masamune, S., Palmar, M.A.J., Gambani, R., Thompson, S., Davies, J.T., Williams, S.F., and Peoples, O.P. (1989) J. Am. Chem. Soc. 111:1879-1881.
- 31. Dudley, K., Shanahan, F., Burtenshaw, M., Evans, E.P., Ruddy S., and Lyon, M.F. (1991) Genet. Res. Camb. 57, 147-152.
- 32. Lewis, V.A., Hynes G.M., Zheng, D., Saibil, H., and Willison, K. (1992) Nature 358, 249-252.
- 33. Ashworth, A. (1993) Genomics 18, 195-198.
- 34. Willison, K., Kelly, A., Dudley K., Goodfellow, P., Spurr, N., Groves, V., Gorman, P., Sheer, D., and Trowsdale, J. (1987) EMBO J. 6, 1967-1974.